organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jing-Yun Wu,^a Michael Yen-Nan Chiang^a* and Wen-Feng Zeng^b

^aDepartment of Chemistry, National Sun Yat-Sen University, 70 Lein-Hai Road, Kaohsiung 804, Taiwan, Republic of China, and ^bDepartment of Industrial Safety and Hygiene, Tajen Institute of Technology, Pingtung 90703, Taiwan, Republic of China

Correspondence e-mail: michael@mail.nsysu.edu.tw

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.007 Å R factor = 0.068 wR factor = 0.054 Data-to-parameter ratio = 11.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

N-(2-Bromophenyl)phthalimide

The title compound, $C_{14}H_8BrNO_2$, was obtained as an N-protected starting material for the syntheses of multidentate ligands bearing N-donor atoms. Its crystal structure is reported here. The structure contains two orthogonal planar moieties (the bromophenyl ring and the phthalimide plane), with an interplanar angle of 79.2 (4)°. A short intermolecular $Br \cdots O$ distance of 3.070 (4) Å is observed.

Comment

The crystal structure of *N*-(2-bromophenyl)phthalimide, (I), contains two almost perpendicular planar moieties, with an interplanar angle of 79.2 (?)°. The bromophenyl and phthalimide rings are each essentially planar, within 0.008 Å. All intramolecular distances are comparable to other aryl-phthalimide structures (Ribar *et al.*, 1976; Voliotis *et al.*, 1984). The short Br···O distance of 3.07 (?) Å is shorter than the sum of van der Waals radii (1.85 + 1.52 Å), but longer than some other reported Br···O contact distances (Doi *et al.*, 1985). This short Br···O contact indicates a possible charge-transfer interaction or dipole-dipole interaction between the Br atom and the carbonyl O atom. The relatively low C-C bond precision is probably due to the high proportion of weak data [only 46.5% greater than $3\sigma(I)$].

Experimental

The title compound, *N*-(2-bromophenyl)phthalimide, was obtained by adding phthalic anhydride (17.60 g) to liquid 2-bromoaniline (20.43 g) in a 1:1 molar ratio. The reaction mixture was heated with stirring until all the solid had dissolved (or reacted), and the temperature was maintained for approximately another 8 h. Cooling to room temperature led to a solidified product. Colorless crystals were obtained from a mixed solvent system of *n*-hexane and dichloromethane. The structure was supported by EI–MS (M^+ = 302). The C, H, N and O contents were analysed using a Heraeus CHN–O instrument. Analysis calculated for C₁₄H₈BrNO₂: C 55.66, H 2.67, N 4.64, O 10.59%; found: C 55.26, H 2.70, N 4.68, O 10.55%. Received 3 October 2002 Accepted 6 November 2002 Online 15 November 2002

 \odot 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

A view of the molecule of the title compound, with 30% probability ellipsoids.

Crystal data

 $\begin{array}{l} C_{14}H_8 \text{BrNO}_2 \\ M_r = 302.11 \\ \text{Monoclinic, } P2_1/n \\ a = 11.330 (1) \text{ Å} \\ b = 8.100 (1) \text{ Å} \\ c = 13.965 (1) \text{ Å} \\ \beta = 104.096 (9)^{\circ} \\ V = 1243.0 (2) \text{ Å}^3 \\ Z = 4 \end{array}$

Data collection

Rigaku AFC-7S diffractometer R_{int} ω -2 θ scans θ_{max} Absorption correction: ψ scansh =(North et al., 1968)k = $T_{min} = 0.155$, $T_{max} = 0.200$ l =3208 measured reflections3 state2852 independent reflectionse1882 reflections with $I > \sigma(I)$ in

Refinement

Refinement on FR = 0.068wR = 0.054S = 1.831882 reflections 163 parameters $D_x = 1.614 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 19 reflections $\theta = 5.4-7.8^{\circ}$ $\mu = 3.30 \text{ mm}^{-1}$ T = 298.2 KPrism, colorless $0.60 \times 0.56 \times 0.48 \text{ mm}$

$$\begin{split} R_{\rm int} &= 0.059 \\ \theta_{\rm max} &= 27.5^{\circ} \\ h &= 0 \rightarrow 14 \\ k &= 0 \rightarrow 10 \\ l &= -18 \rightarrow 17 \\ \text{3 standard reflections} \\ \text{every 150 reflections} \\ \text{intensity decay: } -0.2\% \end{split}$$

H-atom parameters constrained
$$\begin{split} &w = 1/[\sigma^2(F_o) + 0.00022|F_o|^2] \\ &(\Delta/\sigma)_{\rm max} = 0.007 \\ &\Delta\rho_{\rm max} = 0.78 \ {\rm e} \ {\rm \AA}^{-3} \\ &\Delta\rho_{\rm min} = -0.73 \ {\rm e} \ {\rm \AA}^{-3} \end{split}$$

Table 1		
Salaatad	goomotria	norom

Selected geometric parameters (Å, $^{\circ}$).

Br1-C2	1.885 (4)	C4-C5	1.354 (8)
O1-C13	1.207 (5)	C5-C6	1.375 (7)
O2-C14	1.198 (5)	C7-C8	1.388 (6)
N1-C1	1.434 (5)	C7-C12	1.378 (6)
N1-C13	1.405 (6)	C7-C13	1.470 (6)
N1-C14	1.409 (5)	C8-C9	1.377 (6)
C1-C2	1.382 (6)	C8-C14	1.475 (7)
C1-C6	1.387 (6)	C9-C10	1.384 (7)
C2-C3	1.381 (6)	C10-C11	1.381 (7)
C3-C4	1.377 (7)	C11-C12	1.386 (7)
C1-N1-C13	124.5 (3)	C12-C7-C13	130.7 (4)
C1-N1-C14	124.2 (4)	C7-C8-C9	122.1 (4)
C13-N1-C14	111.4 (4)	C7-C8-C14	108.5 (4)
N1-C1-C2	121.0 (4)	C9-C8-C14	129.4 (4)
N1-C1-C6	119.0 (4)	C8-C9-C10	116.8 (4)
C2-C1-C6	119.9 (4)	C9-C10-C11	121.7 (4)
Br1-C2-C1	121.1 (3)	C10-C11-C12	121.0 (5)
Br1-C2-C3	119.7 (4)	C7-C12-C11	117.7 (4)
C1-C2-C3	119.2 (4)	O1-C13-N1	124.7 (4)
C2-C3-C4	120.3 (5)	O1-C13-C7	129.4 (4)
C3-C4-C5	120.3 (5)	N1-C13-C7	105.9 (4)
C4-C5-C6	120.6 (5)	O2-C14-N1	124.1 (4)
C1-C6-C5	119.7 (4)	O2-C14-C8	130.2 (4)
C8-C7-C12	120.7 (4)	N1-C14-C8	105.7 (4)
C8-C7-C13	108.6 (4)		

Phenyl H atoms were placed in calculated positions, with a C–H distance of 0.95 Å. All H atoms were included in the final cycles of least-squares refinement with fixed positional parameters and isotropic displacement parameters $(1.2U_{eq})$ of the attached non-H atoms).

Data collection: *MSC/AFC Diffractometer Control Software* (Molecular Structure Corporation, 1992); cell refinement: *MSC/AFC Diffractometer Control Software*; data reduction: *TEXSAN* (Molecular Structure Corporation, 1992–1997); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *TEXSAN*; software used to prepare material for publication: *TEXSAN*.

This work is supported by the National Science Council of China (No. NSC91-2113-M110-021).

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Doi, M., Yasuda, N., Ishida, T. & Inoue, M. (1985). Chem. Pharm. Bull. 33, 2183–2189.
- Molecular Structure Corporation (1992). MSC/AFC Diffractometer Control Software. Version 5.32. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1992–1997). *TEXSAN*. Version 1.7. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Ribar, B., Stenkovic, S. & Halasi, R. (1976). Cryst. Struct. Commun. 5, 919–922. Voliotis, S., Arrieta, J. M. & Germain, G. (1984). Acta Cryst. C40, 1946–1948.