Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jing-Yun Wu, ${ }^{\text {a }}$ Michael Yen-Nan Chiang ${ }^{\mathbf{a} *}$ and Wen-Feng Zeng ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, National Sun Yat-Sen University, 70 Lein-Hai Road, Kaohsiung 804, Taiwan, Republic of China, and ${ }^{\mathbf{b}}$ Department of Industrial Safety and Hygiene, Tajen Institute of Technology, Pingtung 90703, Taiwan, Republic of China

Correspondence e-mail:
michael@mail.nsysu.edu.tw

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.068$
$w R$ factor $=0.054$
Data-to-parameter ratio $=11.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

N-(2-Bromophenyl)phthalimide

The title compound, $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{BrNO}_{2}$, was obtained as an N -protected starting material for the syntheses of multidentate ligands bearing N -donor atoms. Its crystal structure is reported here. The structure contains two orthogonal planar moieties (the bromophenyl ring and the phthalimide plane), with an interplanar angle of 79.2 (4) ${ }^{\circ}$. A short intermolecular $\mathrm{Br} \cdots \mathrm{O}$ distance of 3.070 (4) \AA is observed.

Comment

The crystal structure of N-(2-bromophenyl)phthalimide, (I), contains two almost perpendicular planar moieties, with an interplanar angle of $79.2(?)^{\circ}$. The bromophenyl and phthalimide rings are each essentially planar, within 0.008 A. All intramolecular distances are comparable to other arylphthalimide structures (Ribar et al., 1976; Voliotis et al., 1984). The short $\mathrm{Br} \cdots \mathrm{O}$ distance of 3.07 (?) \AA is shorter than the sum of van der Waals radii $(1.85+1.52 \AA)$, but longer than some other reported $\mathrm{Br} \cdots \mathrm{O}$ contact distances (Doi et al., 1985). This short $\mathrm{Br} \cdot \mathrm{O}$ contact indicates a possible chargetransfer interaction or dipole-dipole interaction between the Br atom and the carbonyl O atom. The relatively low $\mathrm{C}-\mathrm{C}$ bond precision is probably due to the high proportion of weak data [only 46.5% greater than $3 \sigma(I)$].

(I)

Experimental

The title compound, N-(2-bromophenyl)phthalimide, was obtained by adding phthalic anhydride (17.60 g) to liquid 2-bromoaniline $(20.43 \mathrm{~g})$ in a $1: 1$ molar ratio. The reaction mixture was heated with stirring until all the solid had dissolved (or reacted), and the temperature was maintained for approximately another 8 h . Cooling to room temperature led to a solidified product. Colorless crystals were obtained from a mixed solvent system of n-hexane and dichloromethane. The structure was supported by EI-MS ($M^{+}=302$). The $\mathrm{C}, \mathrm{H}, \mathrm{N}$ and O contents were analysed using a Heraeus $\mathrm{CHN}-\mathrm{O}$ instrument. Analysis calculated for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{BrNO}_{2}$: C 55.66, H $2.67, \mathrm{~N}$ 4.64 , O 10.59%; found: C 55.26, H $2.70, \mathrm{~N} 4.68$, O 10.55%.

Received 3 October 2002
Accepted 6 November 2002 Online 15 November 2002

Figure 1
A view of the molecule of the title compound, with 30% probability ellipsoids.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{BrNO}_{2}$

$M_{r}=302.11$
Monoclinic, $P 2_{1} / n$
$a=11.330$ (1) A
$b=8.100(1) \AA$
$c=13.965$ (1) \AA
$\beta=104.096(9)^{\circ}$ 。
$V=1243.0(2) \AA^{3}$
$Z=4$
$D_{x}=1.614 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 19
reflections
$\theta=5.4-7.8^{\circ}$
$\mu=3.30 \mathrm{~mm}^{-1}$
$T=298.2 \mathrm{~K}$
Prism, colorless
$0.60 \times 0.56 \times 0.48 \mathrm{~mm}$

Data collection

Rigaku AFC-7S diffractometer	$R_{\text {int }}=0.059$
$\omega-2 \theta$ scans	$\theta_{\max }=27.5^{\circ}$
Absorption correction: ψ scans	$h=0 \rightarrow 14$
(North et al., 1968)	$k=0 \rightarrow 10$
$T_{\min }=0.155, T_{\max }=0.200$	$l=-18 \rightarrow 17$
3208 measured reflections	3 standard reflections
2852 independent reflections	every 150 reflections
1882 reflections with $I>\sigma(I)$	intensity decay: -0.2%

Refinement

Refinement on F
$R=0.068$
$w R=0.054$
$S=1.83$
1882 reflections
163 parameters

H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}\right)+0.00022\left|F_{o}\right|^{2}\right]$
$(\Delta / \sigma)_{\max }=0.007$
$\Delta \rho_{\text {max }}=0.78 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.73 \mathrm{e}_{\AA^{-3}}$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$.

$\mathrm{Br} 1-\mathrm{C} 2$	$1.885(4)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.354(8)$
$\mathrm{O} 1-\mathrm{C} 13$	$1.207(5)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.375(7)$
$\mathrm{O} 2-\mathrm{C} 14$	$1.198(5)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.388(6)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.434(5)$	$\mathrm{C} 7-\mathrm{C} 12$	$1.378(6)$
$\mathrm{N} 1-\mathrm{C} 13$	$1.405(6)$	$\mathrm{C} 7-\mathrm{C} 13$	$1.470(6)$
$\mathrm{N} 1-\mathrm{C} 14$	$1.409(5)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.377(6)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.382(6)$	$\mathrm{C} 8-\mathrm{C} 14$	$1.475(7)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.387(6)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.384(7)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.381(6)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.381(7)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.377(7)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.386(7)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 13$	$124.5(3)$	$\mathrm{C} 12-\mathrm{C} 7-\mathrm{C} 13$	$130.7(4)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 14$	$124.2(4)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$122.1(4)$
$\mathrm{C} 13-\mathrm{N} 1-\mathrm{C} 14$	$111.4(4)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 14$	$108.5(4)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$121.0(4)$	$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 14$	$129.4(4)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6$	$119.0(4)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$116.8(4)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$119.9(4)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$121.7(4)$
$\mathrm{Br} 1-\mathrm{C} 2-\mathrm{C} 1$	$121.1(3)$	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$121.0(5)$
$\mathrm{Br} 1-\mathrm{C} 2-\mathrm{C} 3$	$119.7(4)$	$\mathrm{C} 7-\mathrm{C} 12-\mathrm{C} 11$	$117.7(4)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$119.2(4)$	$\mathrm{O} 1-\mathrm{C} 13-\mathrm{N} 1$	$124.7(4)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$120.3(5)$	$\mathrm{O} 1-\mathrm{C} 13-\mathrm{C} 7$	$129.4(4)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$120.3(5)$	$\mathrm{N} 1-\mathrm{C} 13-\mathrm{C} 7$	$105.9(4)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$120.6(5)$	$\mathrm{O} 2-\mathrm{C} 14-\mathrm{N} 1$	$124.1(4)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$119.7(4)$	$\mathrm{O} 2-\mathrm{C} 14-\mathrm{C} 8$	$130.2(4)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 12$	$120.7(4)$	$\mathrm{N} 1-\mathrm{C} 14-\mathrm{C} 8$	$105.7(4)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 13$	$108.6(4)$		

Phenyl H atoms were placed in calculated positions, with a $\mathrm{C}-\mathrm{H}$ distance of $0.95 \AA$. All H atoms were included in the final cycles of least-squares refinement with fixed positional parameters and isotropic displacement parameters ($1.2 U_{\text {eq }}$ of the attached non-H atoms).

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1992-1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: TEXSAN; software used to prepare material for publication: TEXSAN.

This work is supported by the National Science Council of China (No. NSC91-2113-M110-021).

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Doi, M., Yasuda, N., Ishida, T. \& Inoue, M. (1985). Chem. Pharm. Bull. 33, 2183-2189.
Molecular Structure Corporation (1992). MSC/AFC Diffractometer Control Software. Version 5.32. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1992-1997). TEXSAN. Version 1.7. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Ribar, B., Stenkovic, S. \& Halasi, R. (1976). Cryst. Struct. Commun. 5, 919-922.
Voliotis, S., Arrieta, J. M. \& Germain, G. (1984). Acta Cryst. C40, 1946-1948.

